
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

Optimality Measures for Performance Profiles

Elizabeth D. Dolan, Jorge J. Moré and Todd S. Munson

Mathematics and Computer Science Division

Preprint ANL/MCS-P1155-0504

May 2004

∗Work supported by the Mathematical, Information, and Computational Sciences Division subprogram

of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy,

under Contract W-31-109-Eng-38, and by the National Science Foundation grant DMI-0322580.

Contents

1 Introduction 1

2 Approximate Active Sets and Multipliers 3

3 Optimality Measures and Convergence Tests 5

4 Scale Invariance 10

5 Benchmarking with COPS 12

6 Computational Experiments 13

7 Concluding Remarks 17

i

Optimality Measures for Performance Profiles∗

Elizabeth D. Dolan,† Jorge J. Moré,§ and Todd S. Munson§

Abstract

We examine the importance of optimality measures when benchmarking a set of solvers,
and show that scaling requirements lead to a convergence test for nonlinearly constrained
optimization solvers that uses a mixture of absolute and relative error measures. We
demonstrate that this convergence test is well behaved at any point where the con-
straints satisfy the Mangasarian-Fromovitz constraint qualification and also avoids the
explicit use of a complementarity measure. Computational experiments explore the
impact of this convergence test on the benchmarking process with performance profiles.

1 Introduction

Benchmarking is essential when developing numerical software because this process reveals
the strengths and weaknesses of the software. To obtain useful information from the bench-
mark, attention must be given to the convergence tests and tolerances used by competing
solvers. In particular, a comparison between a solver that computes a highly accurate
solution and another that computes an inaccurate solution can be highly biased.

We propose a convergence test for benchmarking nonlinearly constrained optimization
solvers. The use of a specific convergence test means that all solvers are treated equally
and that we can guarantee that the approximate solutions returned have the same level of
accuracy. This removes a major bias in the benchmarking process. While we are primarily
interested in convergence tests that can be used by solvers for the constrained optimization
problem

min {f(x) : l ≤ c(x) ≤ u} , (1.1)

our remarks apply to the benchmarking of general iterative solvers.
We could introduce a specific convergence test in the benchmarking process by modi-

fying all the solvers in the benchmark. This approach is not feasible, however, unless we
have access to the source code for all of the solvers. Even with this access, adding a new
convergence test requires detailed knowledge of the solver. In general, only the developers
can reliably modify their code. Furthermore, the cost of applying a convergence test may
be nonnegligible if some of the required information is not readily available and must be
computed, resulting in a noticeable increase in the total time taken to solve the benchmark
problem.

∗Work supported by the Mathematical, Information, and Computational Sciences Division subprogram

of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy,

under Contract W-31-109-Eng-38, and by the National Science Foundation grant DMI-0322580.
†Department of Computer Science, The University of North Carolina at Chapel Hill (dolan@cs.unc.edu).
§Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439

({more,tmunson}@mcs.anl.gov).

1

An alternative approach is to compute and check a specific convergence test for all the
solvers a posteriori. In this approach each solver is first asked to solve the problem by
enforcing its native convergence test with default tolerances. If the approximate solution
returned does not satisfy the a posteriori convergence test, then the native solver tolerances
are reduced and the problem is re-solved. This process is repeated until the a posteriori
convergence test is satisfied or a time limit is exceeded. This approach guarantees that the
solution reported is at least as accurate as all the other solutions. Moreover, this approach
can be readily implemented because access to the source code for each solver is not required.

We impose two major requirements on the convergence test. The first requirement is
that the accuracy be based only on the approximate solution returned by the solver; all
other quantities needed to assess the level of accuracy must be computed independently.
The other requirement is scale invariance of the convergence test when either the function
and constraints are scaled or when the variables are scaled.

Our convergence test for constrained optimization problems is based on the first-order
optimality conditions but uses a mixture of absolute and relative error measures. Section 2
defines these measures and uses them to define τ -active constraints and the associated
approximate multipliers. We have used the nonstandard term τ -active constraint because
the term ε-active constraint is invariably related to absolute error measures.

We define a convergence test in Section 3 in terms of measures for feasibility and sta-
tionarity that take into account the relative size of the constraints. We show that this
convergence test is well behaved at any point where the constraints satisfy the Mangasarian-
Fromovitz constraint qualification, but may fail if this constraint qualification does not hold.
We also examine the relationship of our convergence test to other tests commonly used in
optimization software and show that our convergence test avoids the explicit use of a com-
plementarity measure.

Section 4 examines the scaling properties of the convergence tests introduced in Sec-
tion 3. We show that these convergence tests are scale invariant under reasonable conditions.
We also examine the scale invariance properties of other convergence tests.

Section 5 describes the benchmarking process based on the convergence test introduced
in Section 3. We use performance profiles [3] and Version 3.0 of COPS [4], the Constrained
Optimization Problem Set, to evaluate the effect of the convergence tests. Performance
profiles have been used in a wide variety of benchmarking studies (for example, [1, 2, 8, 9]),
but in almost all cases the convergence criteria have not been specified in detail. This is
certainly the case for benchmarking studies in the AMPL or GAMS modeling environment
because in these cases there is no easy access to the source of the solvers. Our computational
results in Section 6 show the importance of using a specific convergence test for all the solvers
in the benchmark because some of the solvers have widely different notions of optimality
with their default tolerances. Our results show that the trends in the performance profiles
remain the same, but that important differences arise with a consistent convergence test.

2

2 Approximate Active Sets and Multipliers

Given τ in (0, 1) and an approximate solution x to the general optimization problem (1.1),
we define measures of optimality in terms of the set of τ -active constraints and associated
approximate multipliers.

The set of τ -active constraints at x consists of all constraints that are near the bounds
l and u as measured by τ . Since we want our measure to be almost scale independent,
the measure of nearness involves a mixture of the absolute and relative errors. Given real
numbers ξ1 and ξ2, we define

δ[ξ1, ξ2] = min
{
|ξ1 − ξ2|,

|ξ1 − ξ2|
|ξ1|+ |ξ2|

}
,

with δ[0, 0] = 0. We then have δ[ξ1, ξ2] ∈ [0, 1]. Moreover,

δ[ξ1, ξ2] ≤ τ if and only if |ξ1 − ξ2| ≤ τ max{1, |ξ1|+ |ξ2|}.

In particular, δ[ξ1, ξ2] is the relative error whenever |ξ1|+ |ξ2| ≥ 1.
Given x, y in Rn, we extend this definition of error to vectors by defining a vector-valued

error measure d : Rn × Rn 7→ Rn by

d[x, y] = (dk[x, y]) = (δ[xk, yk])

so that d[x, y] is a vector where dk[x, y] = δ[xk, yk] for each component k. This definition
implies that d[x, y] = |x−y| for vectors of modest size, that is, ‖x‖∞+‖y‖∞ ≤ 1. Moreover,
if ‖ · ‖ is a monotone norm (|x| ≤ |y| implies that ‖x‖ ≤ ‖y‖), then

min
{
‖x− y‖, ‖x− y‖

‖x‖∞ + ‖y‖∞

}
≤ ‖d[x, y]‖ ≤ min

{
‖x− y‖,

∥∥∥∥(
|xk − yk|
|xk|+ |yk|

)∥∥∥∥}
.

This inequality shows that ‖d[x, y]‖ is closely related to the absolute and relative error
between x and y.

This definition of error between vectors can be modified in various ways. In particular,
if we wish to introduce different levels of absolute and relative errors by requiring that

|ξ1 − ξ2| ≤ τaτ, or
|ξ1 − ξ2|
|ξ1|+ |ξ2|

≤ τ (2.1)

for some τa ≥ 0, then we can define

δ[ξ1, ξ2] = min
{(

1
τa

)
|ξ1 − ξ2|,

|ξ1 − ξ2|
(|ξ1|+ |ξ2|)

}
. (2.2)

The case where τa = 0 is equivalent to using a purely relative error test and can be obtained
as the limit of δ[ξ1, ξ2] as τa converges to zero.

If we use the definition (2.2), then the inequality δ[ξ1, ξ2] ≤ τ is equivalent to (2.1).
Moreover, we now have

δ[ξ1, ξ2] ≤ τ if and only if |ξ1 − ξ2| ≤ τ max{τa, |ξ1|+ |ξ2|}.

3

This equivalence shows that the test δ[ξ1, ξ2] ≤ τ reduces to the relative convergence test
in (2.1) unless |ξ1| + |ξ2| ≤ τa, and then becomes the absolute convergence test in (2.1).
We can emphasize the relative error in (2.2) by choosing τa ≤ τ . We later show that this
influences the scale invariance of convergence tests based on δ[·, ·]. We set τa = 1 in the
remainder of this paper, but all results can be easily modified for any τa ≥ 0.

Given τ in (0, 1) and the definition d : Rn×Rn 7→ Rn of error between vectors, we define
the set of τ -active constraints at x by

Aτ (x) = {k : min{dk[c(x), l], dk[c(x), u]} ≤ τ} . (2.3)

In general, τ is related to the expected accuracy of the optimization algorithm because the
set Aτ (x) contains all constraints that are nearly active as measured by τ . Moreover, for τ

sufficiently small, Aτ (x) is the set A0(x) of active constraints at x.
This definition of τ -active constraints for the optimization problem (1.1) reduces to

standard notions for optimization problems in generic form. For example, if we consider

min {f(x) : c(x) ≤ 0} , (2.4)

then dk[c(x), 0] = min {|ck(x)|, 1} , and thus Aτ (x) = {k : |ck(x)| ≤ τ}. The more general
definition (2.3) is needed for dealing with realistic problems that have not been forced into
standard forms.

We measure optimality by computing multipliers explicitly with the requirement that
the multipliers lie in the cone Sτ (x) associated with Aτ (x), where

Sτ (x) =

v :

vk free if dk[c(x), l] ≤ τ, dk[c(x), u] ≤ τ

vk ≥ 0 if dk[c(x), l] ≤ τ, dk[c(x), u] > τ

vk ≤ 0 if dk[c(x), l] > τ, dk[c(x), u] ≤ τ

vk = 0 if dk[c(x), l] > τ, dk[c(x), u] > τ.

(2.5)

If the kth constraint is an equality constraint and is τ -active, then lk = uk, and thus the
kth component is free in the cone Sτ (x). Moreover, the kth component is zero if the kth
constraint is not τ -active.

Recall that a Karush-Kuhn-Tucker (KKT) pair (x∗, λ∗) for the optimization problem
(1.1) satisfies

∇f(x∗) = ∇c(x∗)λ∗, λ∗ ∈ S0(x∗),

where λ∗ are the multipliers. Thus it is natural to determine multipliers via the optimization
problem

min {‖∇f(x)−∇c(x)v‖ : v ∈ Sτ (x)} , (2.6)

for some norm ‖ · ‖. If λ(x, τ) is a solution of (2.6), then

r(x, τ) = ∇f(x)−∇c(x)λ(x, τ)

is the residual in the KKT conditions. In the next section we will show that ‖r(x, τ)‖ is an
upper bound on our measure of optimality.

4

If we consider the special case of bound-constrained problems where c(x) = x, the
residual is given by

r(x, τ) =

0 if dk[x, l] ≤ τ, dk[x, u] ≤ τ

max(0, ∂kf(x)) if dk[x, l] ≤ τ, dk[x, u] > τ

min(0, ∂kf(x)) if dk[x, l] > τ, dk[x, u] ≤ τ

∂kf(x) if dk[x, l] > τ, dk[x, u] > τ

if we use any lp norm (p < ∞) in (2.6). This expression shows that −r(x, 0) agrees with the
projected gradient as used, for example, by Chin and Moré [7, page 1105]. Thus −r(x, τ) can
be viewed as a generalization of the projected gradient to general nonlinearly constrained
problems.

The choice of the l2 norm in the computation of the multipliers in (2.6) leads to a linearly
constrained least squares problem. We prefer to use the l∞ norm and thus define λ(x, τ) as
a solution of

min {‖y‖∞ : y = ∇f(x)−∇c(x)v, v ∈ Sτ (x)} . (2.7)

This problem can be formulated as a linear programming problem, and thus λ(x, τ) can be
readily computed by several solvers. The solution λ(x, τ) to (2.7) is a set of approximate
multipliers for the original optimization problem.

3 Optimality Measures and Convergence Tests

We define a convergence test for the optimization problem (1.1) in terms of measures of
feasibility, complementarity, and stationarity that takes into account the relative size of
the constraints. Given tolerances τ1, . . . , τp and measures of optimality νi : Rn 7→ R+, a
convergence test defines a set

C(τ) = {x ∈ Rn : νi(x) ≤ τi, 1 ≤ i ≤ p}

of acceptable points. A minimal requirement on the convergence test is that C(0) contain
only KKT points.

The standard measure of feasibility for constraints of the form l ≤ c(x) ≤ u can be
written in the form

‖mid{c(x)− l, 0, c(x)− u}‖,

where mid{· , ·, ·} is the argument in the middle. We introduce the relative size of the
constraints by defining the feasibility measure

νf (x) = ‖v(x)‖,

where ‖ · ‖ is any norm and

vk(x) =

{
0 if lk ≤ ck(x) ≤ uk

min(dk[c(x), l], dk[c(x), u]) otherwise.

5

A short computation shows that if ‖ · ‖ is a monotone norm, then

νf (x) ≤ ‖mid{c(x)− l, 0, c(x)− u}‖,

and thus νf (x) is bounded above by the absolute error in the constraint violation. We define
a vector x ∈ Rn to be τ -feasible if νf (x) ≤ τ .

In most cases we use the l∞ norm. For this norm a τ -feasible vector is precisely a vector
that satisfies

lk ≤ ck(x) ≤ uk or min{dk[c(x), l], dk[c(x), u]} ≤ τ, 1 ≤ k ≤ n.

Moreover, if we consider the generic optimization problem (2.4) and any τ ∈ (0, 1), then x

is τ -feasible if and only if ‖c(x)+‖ ≤ τ . The equivalence of norms in finite dimensions shows
that these results hold for any norm provided τ is sufficiently small. Finally, 0 ≤ νf (x) ≤ 1
with the l∞ norm.

An advantage of computing the multipliers by either (2.6) or (2.7) is that all the mul-
tipliers of the τ -active constraints have the proper sign. Moreover, λk(x) = 0 if the kth
constraint is not τ -active. Hence, complementarity should be defined in terms of the con-
straint violation for the τ -active constraints. We define

νc(x, τ) = ‖w(x, τ)‖

as a measure of complementarity, where

wk(x, τ) =

{
min(dk[c(x), l], dk[c(x), u]) k ∈ Aτ (x)
0 otherwise

The definition of Aτ (x) implies that νc(x, τ) ≤ τ when we use the l∞ norm, and thus the
complementarity measure νc is never large.

An optimization algorithm should deliver approximate solutions that are τ -feasible, that
is, νf (x) ≤ τ . For τ -feasible vectors in the l∞ norm we have

νf (x) ≤ νc(x, τ) ≤ τ,

and thus the complementarity measure dominates for τ -feasible vectors.
The classical method to measure stationarity is with the norm of the residual in the

KKT conditions. However, in order to take into account the relative size of ∇f(x), we use
the stationarity measure

νs(x, τ) = ‖d[∇f(x),∇c(x)λ(x, τ)]‖.

If ‖ · ‖ is a monotone norm, then the definition of the function d : Rn×Rn 7→ R implies that

νs(x, τ) ≤ ‖∇f(x)−∇c(x)λ(x, τ)‖

so that νs(x, τ) is bounded above by the norm of the residual in the KKT conditions.

6

Table 3.1 summarizes all the measures of optimality for an optimization problem. We
have defined these measures in terms of an arbitrary norm, but we use the l∞ norm. We
define a convergence test in terms of tolerances τf and τs by computing multipliers via (2.7)
with the τ -active set determined by (2.3) with τ = τf , and requiring that

νf (x) ≤ τf , νs(x, τf) ≤ τs. (3.1)

The definition of νc guarantees that νc(x, τf) ≤ τf in the l∞ norm, and thus it is not
necessary to require a test on complementarity. This statement seems to be incorrect at
first sight but is a consequence of using a set of multipliers that are zero if the constraint is
not τ -active but otherwise have the proper sign.

Table 3.1: Measures of optimality

Feasibility νf (x)
Complementarity νc(x, τ)
Stationarity νs(x, τ)

The following result shows that the optimality measures in Table 3.1 behave appropri-
ately if we consider a sequence of tolerances that converge to zero. We assume that we have
a sequence that converges to a point x∗ that satisfies the Mangasarian-Fromovitz constraint
qualification at x∗ in the sense that

∇c(x∗)v = 0, v ∈ S0(x∗) =⇒ v = 0,

where S0(x∗) is the cone (2.5) at τ = 0. This constraint qualification reduces to the classical
Mangasarian-Fromovitz constraint qualification for the generic optimization problem (2.4).

Theorem 3.1 Assume that τa > 0 in (2.1), that {τk} is a sequence of tolerances that
converges to zero, and that {xk} is a sequence that converges to x∗. If {νf (xk)} converges
to zero, then x∗ is feasible. Moreover, if {νs(xk, τk)} converges to zero and the constraints
satisfy the Mangasarian-Fromovitz constraint qualification at x∗, then x∗ is a KKT point of
the optimization problem (1.1).

Proof. Since τa > 0, the definition (2.1) of δ[·, ·] implies that d[·, ·] preserves convergent
sequences, that is, {d[yk, y

∗]} converges to zero if and only if {yk} converges to y∗. Hence,
the definition of νf shows that x∗ is feasible.

We now assume that {νs(xk, τk)} converges to zero and show that x∗ is a KKT point
of the optimization problem (1.1) if the constraints satisfy the Mangasarian-Fromovitz con-
straint qualification at x∗. Consider the sequence Sτk

(xk), and note that for any subse-
quence K there is a refinement K0 such that Sτk

(xk) is constant for k ∈ K0. Moreover,
Sτk

(xk) ⊂ S0(x∗) for k ∈ K0. Thus, if {λ(xk, τk)} is bounded, then the definition of

7

Sτk
(xk), shows that any limit point λ∗ of {λ(xk, τk)} is a valid set of multipliers for x∗, that

is, λ∗ ∈ S0(x∗).
We show that {λ(xk, τk)} is bounded by first noting that since {νs(xk, τk)} converges

to zero, {∇c(xk)λ(xk, τk)} is bounded. Since {xk} converges to x∗ and the constraints
satisfy the Mangasarian-Fromovitz constraint qualification at x∗, the sequence {λ(xk, τk)}
is bounded.

We have now shown that {λ(xk, τk)} is bounded and that any limit point of this sequence
is a valid set of multipliers for x∗. Since {νs(xk, τk)} converges to zero, x∗ is a KKT point
of the optimization problem (1.1). �

We can generalize Theorem 3.1 by noting that the proof of this result shows that νs is
lower semicontinuous, that is,

lim inf
(x,τ)→(x∗,0)

νs(x, τ) ≥ νs(x∗, 0),

where we have made explicit the dependence of νs on τ . This is of interest because simple
examples show that νs is not continuous in (x, τ), although νs(·, τ) is certainly continuous.

The assumption that the constraints satisfy the Mangasarian-Fromovitz constraint qual-
ification at x∗ is essential for Theorem 3.1. Consider, for example, the optimization problem
in R,

min
{
ξ : 1

2ξ2 ≥ 0
}

.

If {ξk} is any monotone sequence that converges to zero and τk = ξk, then the multipliers
determined by (2.7) are λ(ξ) = 1/ξ. Thus, in this case, {νf (ξk, τk)} converges to zero, but
ξ∗ = 0 is not a KKT point. Of course, in this case the Mangasarian-Fromovitz constraint
qualification fails and the approximate multipliers are unbounded.

We now relate the optimality conditions in Table 3.1 to convergence tests used in opti-
mization algorithms. Consider, for example, the generic optimization problem

min {f(x) : c(x) ≤ 0} .

Given tolerances τf , τc and τs, assume that the convergence tests are

ck(x) ≤ τf , πk(x) ≤ τc, |πk(x)| ≤ τc if |ck(x)| > τf (3.2)

on the approximate solution x and multiplier estimates π(x), and

‖∇f(x)−∇c(x)π(x)‖∞ ≤ τs (3.3)

on the residual of the KKT conditions. These are suitable convergence tests in the sense
that if all the tolerances are set to zero, then we recover the KKT conditions.

An important difference between these convergence tests and the optimality measures
in Table 3.1 is that the multiplier estimates πk(x) are not guaranteed to be nonpositive.
However, if we define

λk(x) =

{
min(πk(x), 0) if k ∈ Aτf

(x)
0 otherwise,

8

then λk(x) ≤ 0 are multiplier estimates with

|λk(x)− πk(x)| ≤ τc. (3.4)

This estimate holds if k ∈ Aτf
(x) and πk(x) ≤ 0 because then λk(x) = πk(x). If k /∈ Aτf

(x)
or πk(x) > 0, then λk(x) = 0. Moreover, in either case (3.2) implies that |πk(x)| ≤ τc.
Hence, (3.4) also holds in this case.

The estimate (3.4) shows that the residual of the KKT condition is bounded in terms
of the tolerances and the problem data. Indeed, a direct consequence of (3.3) and (3.4) is
that

‖∇f(x)−∇c(x)λ(x)‖∞ ≤ τs + ‖∇c(x)‖∞τc.

Hence, we have shown that if the convergence tests (3.2) and (3.3) hold, then

νf (x) ≤ τf , νs(x, τf) ≤ τs + ‖∇c(x)‖∞τc. (3.5)

This is an important observation because (3.2) and (3.3) are closely related to convergence
tests used by optimization solvers such as SNOPT and KNITRO. For example, instead of
(3.2), SNOPT [6] requires that

ck(x) ≤ τf , πk(x) ≤ τc, |ck(x)πk(x)| ≤ τc. (3.6)

This is a stronger convergence test than (3.2) because if (3.6) holds, then

|πk(x)| ≤ τc

τf
if |ck(x)| > τf .

We also note that (3.6) not only implies (3.2) but also implies a bound on the multipliers
of the τ -active constraints. Assume, for example, that the kth constraint is τ -active with

|ck(x)| = στf , σ ∈ (0, 1).

Under this assumption (3.6) implies that

|πk(x)| ≤ 1
σ

τc

τf
.

Thus, for problems with large multipliers, this bound shows that τf may have to be relatively
small in order to satisfy (3.6).

Similar remarks apply to the optimization solver KNITRO [13]. The convergence test in
KNITRO replaces (3.2) by

ck(x) ≤ τf , πk(x) < 0, |ck(x)πk(x)| ≤ τc. (3.7)

Thus, the only difference between the convergence test in SNOPT and KNITRO is that
KNITRO guarantees that the multipliers are negative. For the KNITRO convergence test we
can show that if

λk(x) =

{
πk(x) if k ∈ Aτf

(x)
0 otherwise,

9

then (3.4) holds. Hence, (3.5) also holds.
The convergence tests in SNOPT and KNITRO require the user to choose tolerances τP

and τD. SNOPT sets

τf = τP (1 + ‖x‖), τc = τs = τD(1 + ‖π(x)‖),

while KNITRO sets

τf = max {τP max(1, ‖c(x0)+‖∞), τ0} , τc = τs = max {τD max(1, ‖∇f(x)‖∞), τ0}

for some absolute tolerance τ0 ≥ 0. An important difference between these tests and (3.1)
is that there is no explicit test of the complementarity error in (3.1). Another difference is
that with (3.1) it is readily apparent when the solution is not sufficiently accurate because
in these cases one of the measures in Table 3.1 is above the required tolerance (but less
than one). On the other hand, with unscaled tests, large or small values for an optimality
measure may just be a reflection of the scale of the problem.

4 Scale Invariance

We now examine the invariance properties of convergence tests when the general optimiza-
tion problem (1.1) is transformed into an equivalent optimization problem

min
{

f̂(x) : l̂ ≤ ĉ(x) ≤ û
}

. (4.1)

Scale invariance is a desirable attribute of a convergence test because then the choice of
tolerances can be made on the basis of the desired accuracy, without interference from the
scale of the problem.

We first consider the change of scale f̂ = αf , ĉ = βc, where f is scaled by α > 0, and the
constraints c are scaled by β > 0. With this change of scale we must also scale the bounds l

and u in the optimization problem (1.1) by β so that l̂ = βl and û = βu. The optimization
problems (1.1) and (4.1) are equivalent under this change of scale in the sense that they
have the same solution. Moreover, most optimization algorithms generate the same set of
iterates when the optimization problem is scaled in this manner.

We also consider the change of scale x 7→ Sx in (1.1), where S is a nonsingular diagonal
matrix. In this case we have f̂(x) = f(Sx) and ĉ(x) = c(Sx) in (4.1). With this change
of scale any minimizer x∗ of the optimization problem (1.1) generates a minimizer x̂∗ of
(4.1) via x∗ = Sx̂∗. The converse of this statement also holds. Thus, both optimization
problems, (1.1) and (4.1), have the same solution sets.

We explore the scale invariance of convergence tests under the assumption that all
absolute tolerances are set to zero. For the optimality measures in Table 3.1, this means
that τa = 0 in the definition (2.2) of δ[·, ·]. Under this assumption

d[Sx, Sy] = d[x, y], (4.2)

10

for all nonsingular diagonal matrices S and vectors x and y. If τa > 0, then (4.2) holds if

|sk| (|xk|+ |yk|) ≥ τa, 1 ≤ k ≤ n.

Hence, scale invariance of d[·, ·] holds if the scaled variables for at least one of the vectors
is above the absolute tolerance level, that is, |sk||xk| ≥ τa or |sk||yk| ≥ τa.

The change of scale f̂ = αf , ĉ = βc, in f and c implies that λ̂(x) = (α/β)λ(x) for the
multiplier defined by (2.7), and hence

∇f̂(x) = α∇f(x), ∇ĉ(x)λ̂(x) = α∇c(x)λ(x).

Thus, (4.2) shows that both νf (x) and νs(x) are invariant under this change of scale.
The scaling behavior (4.2) of d[·, ·] also shows that the set of τ -active constraints is

invariant under the change of scale x 7→ Sx, where S is a nonsingular diagonal matrix. On
the other hand, the multipliers λ(x) defined by (2.7) are not invariant under this change of
scale because

∇f̂(x) = S∇f(x), ∇ĉ(x) = S∇c(x).

However, if we modify the norm in (2.7) and consider

min
{
‖D−1y‖∞ : y = ∇f(x)− C(x)v, v ∈ Sτ

}
,

where D is determined from the problem data, then we can have scale invariance. For
example, if

dk = max {|∂kf(x0)|, ‖∂kc(x0)‖} ,

then λ(x) is invariant under this change of scale. If we take into account (4.2), then we have
shown that with this modification all the optimality measures in Table 3.1 are invariant.

An analysis of the scaling behavior of the convergence tests (3.2) and (3.3) requires that
we specify how the multiplier estimate π(x) depends on the change of scale. If we consider
the change of scale where f̂ = αf and ĉ = βc, and assume that π̂(x) = (α/β)π(x) under
this change of scale, then (3.3) shows that this convergence test is scale invariant if the
tolerances are scaled by the appropriate problem data. On the other hand, if we consider
the change of scale x 7→ Sx, where S is a nonsingular diagonal matrix, then the convergence
test (3.3) is not scale invariant unless (3.3) is modified to use a norm scaled by the problem
data.

The scaling properties of the convergence test (3.2) are shared by (3.7), but this is not
the case for (3.6). Indeed, if we consider the change of scale where f̂ = αf and ĉ = βc,
and assume that π̂(x) = (α/β)π(x), then ĉ(x)π̂(x) = αc(x)π(x). Hence, (3.6) shows that τc

must be scaled by both α/β and α. Since τc cannot absorb two different changes of scale,
the convergence test (3.6) is not scale invariant.

11

5 Benchmarking with COPS

We use performance profiles [3] and COPS [4] (Version 3.0) to evaluate the effect of the
optimality measures in Table 3.1. The COPS benchmark collection provides a selection
of difficult nonlinearly constrained optimization problems from applications in optimal de-
sign, fluid dynamics, parameter estimation, mesh smoothing, computational chemistry, and
optimal control, among others. Moreover, each application has a short description of the
formulation of the application as an optimization problem. Figure 5.1 has plots for the
solutions to four problems in COPS.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

2

4

6

8

10

12

14

0 5 10 15

2

4

6

8

10

12

14

16

18

20

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

Figure 5.1: Solutions for the Henon (upper left), cam shape (upper right), tetrahedral mesh
smoothing (lower left), and minimal surface with obstacle (lower right) COPS problems.

Version 3.0 of COPS has 22 different applications. For each of these applications we use
three to five instances of the application obtained by varying a parameter in the application,
for example, the number of grid points in a discretization. Table 5.1 gives the quartiles for
four problem parameters: the number of variables, the number of equality and inequality
constraints, and the total number of constraints (including bounds).

Our benchmarking results are done with a set of problems and solvers. We have used
COPS, but we could have also used a selection of the engineering problems provided by
Vanderbei [11]. Also note that timing data refers to a particular computing environment

12

Table 5.1: Problem data (minimum, quartiles, maximum) for the COPS benchmark

Problem Parameter min q1 q2 q3 max

Variables 98 1146 2500 4398 19241
Equality constraints 0 0 100 1995 7995

Inequality constraints 0 0 0 41 20093
Total constraints 21 1177 2402 4001 20496

(machine, compiler, libraries). The usual cautions apply, and thus our conclusions could
change if the problems, solvers or computing environment changes. On the other hand, the
use of performance profiles tends to minimize the effect of these issues, as noted in [3].

We also note that the solvers for constrained optimization problems invariably have
different requirements. Some of the solver use second-order information, while others (for
example, MINOS and SNOPT) only use first-order information. The use of second-order
information can reduce the number of iterations, but the cost per iteration usually increases.
In addition, obtaining second-order information is more costly and may not even be possible.
Memory requirements can also play an important role. In particular, solvers that use direct
linear equation solvers are often more efficient in terms of computing time, provided there
is enough memory. Moreover, some of the solvers are designed for problems with a modest
number of degrees of freedom.

The script for generating the timing data sends a problem to each solver successively,
so as to minimize the effect of fluctuation in the machine load. The script tracks the wall-
clock time from the start of the AMPL process to the end of the solve. Any process that
runs 30 minutes is declared unsuccessful. We cycle through all the problems, recording the
wall-clock time as well as the combination of AMPL system time (to interpret the model
and compute varying amounts of derivative information required by each solver) and solver
time for each model variation. We have verified that the AMPL time results we present can
be reproduced to within 10 percent accuracy.

6 Computational Experiments

We now investigate how performance profiles behave when the convergence test (3.1) is
enforced on all the solvers. We also describe some of the computational experiments that
we have done with an analyzer that computes the optimality measures in Table 3.1 for
optimization problems in the AMPL or GAMS modeling language.

Figure 6.1 displays performance profiles for the two experiments performed with the
COPS 3.0 test set [4]. The following solvers were used for the experiments:

13

KNITRO 3.0 [13], ASL (20020905) LOQO 6.02 [12], ASL (20020221)
MINOS 5.5 [10], ASL (20020614) SNOPT 6.1 [5], ASL (20020614)

All of the computations were performed on an Intel Pentium 4 1.8 GHz CPU with 512 MB
of RAM and a 256 KB cache, running Red Hat Linux 7.3. Furthermore, a time limit of 30
minutes was imposed on the solvers for each problem in the test set. A failure is reported
when the time limit expires.

The first experiment does not check the optimality measures, trusting the optimization
solver to report optimality. In the second experiment, if the convergence test proposed in
Section 3,

νf (x) ≤ τf , νs(x, τf) ≤ τs, τf = τs = 10−6, (6.1)

is not satisfied, then the convergence tolerances used by the solvers are reduced and the
problem is re-solved. This procedure is stopped when the tolerances provided to the solver
reach 10−16.

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance profile with default tolerances (logarithmic scale)

knitro
loqo
minos
snopt

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance profile with strict tolerances (logarithmic scale)

knitro
loqo
minos
snopt

Figure 6.1: Performance profiles (log2 scale) when no optimality checks are made (left) and
when the convergence test (6.1) is enforced (right).

The analyzer computes the optimality measures in Table 3.1 for optimization problems
in the AMPL or GAMS modeling language. The main computational task in determining
the optimality measures is to compute multipliers by setting up and solving the linear
program (2.7) with MINOS. All the data for (2.7) is written to a file with at least fifteen
digits of accuracy. The optimality and feasibility tolerances for MINOS are set to 10−14

when computing the multipliers. In all tests, MINOS indicates that an optimal solution to
the linear program was found.

The solvers reported optimal solutions that satisfied the convergence test (6.1) on 109
of the 272 problem instances (40%). In two cases, one of the solvers reported that a
nonoptimal solution had been found, when in fact our optimality measures were within the
desired tolerances.

14

The major conclusion that can be drawn from Figure 6.1 is that performance profiles do
indeed change when a consistent convergence test is used. The trends in the plots remain
the same, but the magnitude of the differences, especially at the beginning of the plots can
change significantly.

0 10 20 30 40 50 60

2

4

6

8

10

12

14

Problem Number

N
eg

at
iv

e
Lo

g
of

 M
ax

im
um

 o
f O

pt
im

al
ity

 a
nd

 F
ea

si
bi

lit
y

E
rr

or

Comparison of Optimality and Feasibility Error for KNITRO

optimality enforced
solver defaults

0 10 20 30 40 50 60

2

4

6

8

10

12

14

Problem Number

N
eg

at
iv

e
Lo

g
of

 M
ax

im
um

 o
f O

pt
im

al
ity

 a
nd

 F
ea

si
bi

lit
y

E
rr

or

Comparison of Optimality and Feasibility Error for LOQO

optimality enforced
solver defaults

0 10 20 30 40 50 60

2

4

6

8

10

12

14

Problem Number

N
eg

at
iv

e
Lo

g
of

 M
ax

im
um

 o
f O

pt
im

al
ity

 a
nd

 F
ea

si
bi

lit
y

E
rr

or

Comparison of Optimality and Feasibility Error for MINOS

optimality enforced
solver defaults

0 10 20 30 40 50 60

2

4

6

8

10

12

14

Problem Number

N
eg

at
iv

e
Lo

g
of

 M
ax

im
um

 o
f O

pt
im

al
ity

 a
nd

 F
ea

si
bi

lit
y

E
rr

or

Comparison of Optimality and Feasibility Error for SNOPT

optimality enforced
solver defaults

Figure 6.2: Graph of the performance metric (6.2) for KNITRO (upper left), LOQO (upper
right), MINOS (lower left), and SNOPT (lower right) when no optimality checks are made
(white) and when the convergence test (6.1) is enforced (black).

The effect of convergence criteria on solver performance can also be seen in Figure 6.2.
In this figure we plot the performance metric

p(x) = − log10(max (νf (x), νs(x, τf))) (6.2)

for all the solvers. The white bars are for the first experiment where the convergence
test (6.1) is not enforced, while the black bars are for the second experiment where the
convergence test is enforced.

The height of the bars in Figure 6.2 give the level of accuracy reached. The scaling of the
measures νf and νs shows that we can expect to have the performance metric p(x) ∈ [0, 16]

15

on computations with 16 decimal digits. Problems where p(x) is near zero have not been
solved accurately. If p(x) < 6, then the convergence test (6.1) is not satisfied.

If only a white bar is shown for a problem, the solver either satisfied the convergence
test with the default tolerances and no refinement was needed, or reported a failure. If the
solver reports a failure, then the white bar will not reach a tolerance of τf = τs = 10−6.
In these cases, the iterative reduction in the tolerances was stopped. Those models with
no bar present either encountered the time limit imposed during the testing or reported a
failure.

If a black bar can be seen in Figure 6.2, then for this problem the default tolerances had
to be reduced to meet the convergence test (6.1). As can be seen, all solvers failed to satisfy
(6.1) initially in several cases but managed to satisfy the convergence test as the tolerances
were reduced.

Figure 6.2 clearly shows that the default convergence test for MINOS tends to agree
with (6.1) in most cases. This code was able to satisfy the convergence test with the default
tolerances for most of the problems. On the other hand, these results show that KNITRO

tended to perform poorly when measured with the metric (6.2).
The main reason why solvers fail to satisfy (6.1) with their default tolerances is that, as

noted at the end of Section 3, solvers tend to scale τf and τs based on the size of problem
data, for example, x, the multipliers π(x), or the constraints c(x). This scaling can increase
the values of τf and τs, and thus lead to a weaker convergence test. Assume, for example,
that τP = τD = 10−6 in the convergence tests of SNOPT and KNITRO. If ‖x‖ = 104 and
‖c(x0)+‖∞ = 104, then both solver set τf = 10−2. This explains why some of the white
bars are below the 10−3 level.

Another reason for the large values of νf and νs obtained by the solvers with their
default tolerances is that νf and νs examine the accuracy in all of the components, while
other measures examine the accuracy in the largest components. Consider, for example, a
case where

∇f(x) =

α

1
...
1

 , ∇c(x)π(x) =

α(1 + τs)
1 + ατs

...
1 + ατs

 ,

for some α ≥ 1. In this case,

‖∇f(x)−∇c(x)π(x)‖∞ ≤ τs min
{
‖∇f(x)‖∞, ‖∇c(x)π(x)‖∞

}
,

and thus the relative error between ∇f(x) and ∇c(x)π(x) is small. However, it is also clear
that the relative error between components 2, . . . , n can be large. In fact,

νs(x, τf) =
ατs

2 + ατs
,

and thus the error measured by νs can be arbitrarily close to one.

16

7 Concluding Remarks

We have shown that the convergence test (3.1) is scale invariant when absolute tolerances
are set to zero and behaves satisfactorily at any point where the constraints satisfy the
Mangasarian-Fromovitz constraint qualification. We have also demonstrated that this test
does not need to use the multipliers given by (2.7), but can use the projection of any set of
multipliers into the cone (2.5) associated with Aτ (x). This approach avoids an explicit test
on complementarity.

Our computational experiments have shown that the use of this convergence test on
the benchmarking process can have a significant effect on performance profiles. These
experiments have also shown that an additional advantage of the measures associated with
this convergence test is that solutions of low accuracy will have either νf or νs close to one,
while high accuracy solutions will satisfy (6.1) for the appropriate values of τf and τs. This
is clearly seen in Figure 6.2.

References

[1] H. Y. Benson, D. F. Shanno, and R. J. Vanderbei, A comparative study of large-
scale nonlinear optimization algorithms, in High Performance Algorithms and Software
for Nonlinear Optimization, G. Di Pillo and A. Murli, eds., Kluwer Academic, 2003,
pp. 95–128.

[2] E. G. Birgin, R. A. Castillo, and J. M. Mart́inez, Numerical comparison of
augmented Lagrangian algorithms for nonconvex problems, preprint, University of São
Paulo, 2003.

[3] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance
profiles, Math. Programming, 91 (2002), pp. 201–213.

[4] E. D. Dolan, J. J. Moré, and T. S. Munson, Benchmarking optimization soft-
ware with COPS 3.0, Technical Memorandum ANL/MCS-TM-273, Argonne National
Laboratory, Argonne, Illinois, 2004.

[5] P. E. Gill, W. Murray, and M. A. Saunders, User’s guide for SNOPT 5.3: A
Fortran package for large-scale nonlinear programming, Report NA97-5, University of
California, San Diego, 1997.

[6] , SNOPT: An algorithm for large-scale constrained optimization, SIAM J. Optim.,
12 (2002), pp. 979–1006.

[7] C.-J. Lin and J. J. Moré, Newton’s method for large bound-constrained optimization
problems, SIAM J. Optim., 9 (1999), pp. 1100–1127.

17

[8] H. D. Mittlemann and A. Pruesner, A server for automated performance
analysis of benchmarking data, preprint, Performance World, 2003. Available at
www.gamsworld.org/performance.

[9] J. L. Morales, J. Nocedal, R. A. Waltz, and H. Liu, Assesing the potential
of interior point methods for nonlinear optimization, in High Performance Algorithms
and Software for Nonlinear Optimization, L. T. Biegler, O. Ghattas, M. Heinkenschloss,
and B. Van Bloemen Waanders, eds., Springer-Verlag, 2003, pp. 167–183.

[10] B. A. Murtagh and M. A. Saunders, MINOS 5.5 user’s guide, Report SOL 83-20R,
Stanford University, 1983, revised July 1998.

[11] R. J. Vanderbei, Nonlinear optimization models. See www.sor.princeton.edu/

~rvdb/ampl/nlmodels.

[12] , LOQO user’s manual – Version 4.05, 2000.

[13] R. Waltz and J. Nocedal, KNITRO user’s manual – Version 3.1, Tech. Rep. 5,
Northwestern University, Evanston, 2003.

18

